PURIFICATION OF A SOLUBLE ATPase OF RAT LIVER

J.Y. LE DEAUT, M. LEDIG* and P. MANDEL With the technical assistance of M. MARFING

Centre de Neurochimie du CNRS, Faculté de Médecine, 67-Strasbourg, France

Received 4 August 1971
Revised version received 26 November 1971

1. Introduction

The presence in mitochondria of a Mg²⁺-dependent membrane ATPase [1-6] and a soluble ATPase activated by dinitrophenol (DNP) [7] has been demonstrated. We have found a soluble ATPase, not activated by DNP, in the soluble mitochondrial fraction. The purpose of this paper is to describe the purification and several properties of this ATPase.

2. Methods

2.1. Preparation of the matrix

The mitochondria were prepared according to Harel et al. [8]. The matrix was obtained by freezing and thawing mitochondria, followed by a 165,000 g centrifugation for 2 hr. Proteins were determined by the method of Lowry [9].

2.2. Determination of ATPase activity

For this assay, the incubation mixture contained, in a final vol of 3 ml, the following reagents: 150 mM K-phthalate-KOH buffer pH 5.8, 5 μ M Na-ATP (K. Roth, Germany), and 0.05 ml of enzyme preparation. Incubation was continued for 10 min at 45°. The reaction was stopped by the addition of 0.1 ml of 100% trichloracetic acid and the incubation tubes were placed at 0°. The proteins were sedimented by centrifugation and P_i determined in the supernatant according to Briggs [10].

2.3. Polyacrylamide gel electrophoresis

Polyacrylamide gel at 7% concentration, containing 0.1% SDS was prepared in 0.1 M phosphate buffer at pH 7.1 [11]. 20 μ g samples, previously treated for 1 hr with 1% SDS, were applied on the gel columns. The reference standards were cytochrome c, myoglobin and chymotrypsinogen. Bromophenol was used to mark the front. After electrophoresis for 8 hr at 4 mA the gels were stained with Coomassie Brilliant Blue (0.05% in 10% acetic acid) for 12 hr.

3. Results

3.1. Purification

3.1.1. Ammonium sulphate precipitation

Sufficient solid ammonium sulphate to obtain 53% saturation was gradually added with stirring to the matrix. The resulting precipitate was removed by centrifugation. Ammonium sulphate was then added to the supernatant to obtain 85% saturation; after centrifugation, the precipitate was dissolved in phthalate buffer, pH 5.8.

3.1.2. Heating at 55°

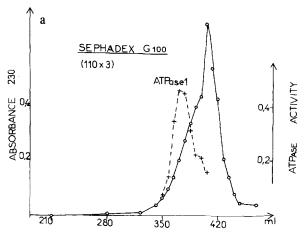
The solution was heated for 15 min at 55°. The precipitate was sedimented by centrifugation. The supernatant was dialysed against phthalate buffer, pH 5.8 for 12 hr.

3.1.3. DEAE-cellulose chromatography

The dialysed solution was brought to pH 7.4 and applied to a 3×45 cm DEAE-cellulose (Serva, Heidelberg, Germany) column which had been equilibrated with 25 mM Tris-HCl buffer pH 7.4. After washing,

^{*} Chargé de Recherche au CNRS.

Fig. 1. DEAE-cellulose chromatography. The column was charged with 55 mg of protein of the ammonium sulphate fraction (53%-85%). The flow rate was approx. 40 ml/hr. 3.5 ml fractions were collected. The absorbance at 280 nm (o—o) was measured for each fraction and ATPase activity (x - - - x) was determined as described in Methods.


proteins were eluted with a discontinuous NaCl gradient. We obtained 2 peaks containing ATPase activity which we designated ATPase 1 and ATPase 2 (fig. 1).

3.1.4. Sephadex G-100 filtration

ATPase 1 and 2 were then purified separately. The samples were applied to a 3×110 cm Sephadex G-100 column equilibrated with phthalate buffer, pH 5.8. ATPase 1 was eluted in fractions 51–57 (fig. 2a) and ATPase 2 in fractions 26–32 (fig. 2b).

3.1.5. Hydroxylapatite chromatography

Fractions containing ATPase were pooled, precipitated with saturated ammonium sulphate and dialysed for 8 hr against 1 mM phosphate buffer, pH 6.8. The dialysed solutions were applied to a 0.8 × 10 cm hydroxylapatite column previously equilibrated with 1 mM phosphate buffer pH 6.8. After washing, the column was eluted with a discontinuous gradient of 1 mM, 10 mM, 50 mM and 300 mM phosphate buffer, pH 6.8 containing 3 M KCl. ATPases 1 and 2 were eluted at a phosphate buffer concentration of 10 mM. Results of purification procedures are shown in table 1. All the following enzymatic studies were performed with about 130-fold purified preparations.

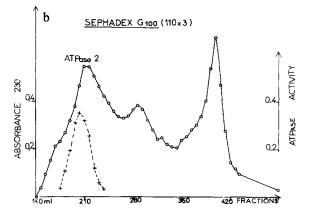


Fig. 2. Sephadex G-100 filtration. The column was charged with about 20 mg of protein of the DEAE-cellulose peak 1. The flow rate was approx. 30 ml/hr. 7 ml fractions were collected. The absorbance at 280 nm (o——o) was measured for each fraction and ATPase activity (x - - - x) was determined as described in Methods.

3.2. Determination of the molecular weight of the two fractions containing ATPase activity

3.2.1. Gel filtration on Sephadex G-100

The 2 purified fractions were filtered on Sephadex G-100 under the conditions previously described. Serum albumin, ovalbumin, trypsin, and cytochrome c were used as markers. We represent log molecular weight (M.W.) as a function of the elution volume (fig. 3). Under these conditions, we found the following M.W.: ATPase 1: 15,900 daltons; ATPase 2: 61,000 daltons.

3.2.2. Polyacrylamide gel electrophoresis
We first studied ATPase 1 by polyacrylamide gel

Table 1
Purification of ATPases.

Steps	Protein (mg)	Specific Activity (µM P _i /min/mg protein)	Purif. factor	Yield (%)
Mitochondria	18,000	0.075	1	****
Matrix	5,050	0.218	2.9	100
Ammonium sulphate precipitate	1,430	0.427	5.7	55.5
Heating	980	0.577	7.7	46.0
ATPase 1:				
DEAE-cellulose	110	1.44	19.3	14.5
Sephadex G-100	23	4.47	59.4	9.4
Hydroxylapatite	7.5	9.12	123.0	6.2
ATPase 2:				
DEAE-cellulose	92	2.07	27.6	17.3
Sephadex G-100	15.5	6.12	82.0	8.1
Hydroxylapatite	5 <i>.</i> 5	10.07	134	5.0

Experiments were performed with mitochondria from 120 rat livers.

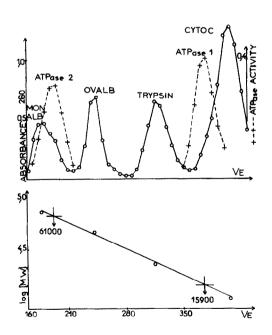


Fig. 3. Sephadex G-100 filtration. The column (3 × 110 cm) was charged with 1 mg of each enzymatic form and about 10 mg of albumin, ovalbumin and cytochrome c. The flow rate was approx. 30 ml/hr. 7 ml fractions were collected. The absorbance at 280 nm (0—0) was measured for each fraction and ATPase activity (x ---x) was determined as described in Methods.

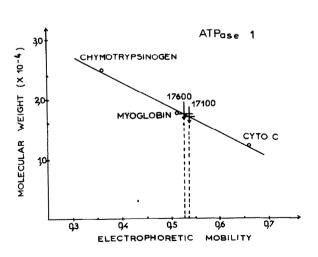


Fig. 4. Polyacrylamide gel electrophoresis was performed as described in Methods. The molecular weights were calculated by comparing the electrophoretic mobilities of the 2 bands to those of the 3 standard proteins.

electrophoresis. There were 2 bands very close together without any other contaminating proteins. The determination of the M.W. of these 2 proteins were made using cytochrome c, myoglobin and chymotrypsinogen as reference standards. The M.W. found for these 2 bands are 17,100 and 17,600 (fig. 4).

4. Discussion

We isolated a soluble ATPase which appears to exist in 2 molecular species. We have purified these 2 forms about 130-fold. The M.W. of the 2 electrophoretic bands obtained with ATPase 1 are 17,100 and 17,600; these values are very similar to the values found using Sephadex G-100 filtration (15,900). This latter method showed the presence of only one active compound. The question arises, what is the significance of these 2 bands? It may be that 1 band corresponds to ATPase and the other to a contaminating protein. Another possibility would be that the 2 bands correspond to 2 isoenzymes of this enzyme.

The M.W. of ATPase 2 is 61,000 and that of ATPase 1 is 15,900. Since their properties are very similar it seems possible that ATPase 2 is a tetramer form of ATPase 1.

The M.W. of a membrane ATPase isolated from Streptococcus fasecalis by Schnebli [12] was 385,000. Penefsky et al. [13] found for a bovine heart mitochondria ATPase a M.W. of 284,000. All these M.W. were higher than the value found for the soluble ATPase we isolated.

During the preparation of this paper, Kalf and Grèce [14] reported the existence of a soluble ATP-ase in rat liver mitochondria. They did not, however,

show the existence of 2 enzymatic forms, nor did they give any indication of the M.W. They purified their preparation only about 10-fold. Our soluble ATPase differs from the Mg²⁺, Ca²⁺, and Na⁺- K⁺ dependent ATPase. Addition of EDTA to the incubation mixture or careful elimination of Na and K are without influence on the ATPase activity.

The study of the properties of this enzyme will be published in a following paper.

References

- [1] W.W. Kielley, in: Phosphorus Metabolism, Vol. 1, eds. W.D. McElroy and B. Glass (John Hopkins Press, Baltimore, 1951) p.377.
- [2] W.W. Kielley and R.W. Kielley, J. Biol. Chem. 200 (1953) 213.
- [3] D.K. Meyers and E.C. Slater, Biochem. J. 67 (1957) 558, 572.
- [4] H.A. Lardy and H.J. Wellman, J. Biol. Chem. 201 (1953) 357.
- [5] C. Cooper and A. Lenninger, J. Biol. Chem. 224 (1957) 561.
- [6] W.W. Kielley and R.W. Kielley, J. Biol. Chem. 191 (1951) 485.
- [7] M.E. Pullman, H.S. Penefsky, A. Datta and E. Racker, J. Biol. Chem. 235 (1961) 3322.
- [8] L. Harel, A. Jacob and Y. Moulé, Bull. Soc. Chim. Biol. 39 (1957) 819.
- [9] O.H. Lowry, N.J. Rosebrough, A.L. Farr and R.J. Randall, J. Biol. Chem. 193 (1951) 265.
- [10] Briggs, J. Biol. Chem. 53 (1922) 13.
- [11] G.J. Davies, Ann. N.Y. Acad. Sci. 121 (1964) 403.
- [12] H.P. Schnebli, A.E. Vatter and A. Abrams, J. Biol. Chem. 245 (1970) 1122.
- [13] H.S. Penefsky and R.C. Warner, J. Biol. Chem. 240 (1965) 4694.
- [14] G.F. Kalf and M.A. Grèce, Biochemistry 9 (1970) 4049.